	Review of quantum differential geometry	Jet bimodules \mathcal{J}_A^k for an algebra A	Concluding remarks and Outlook
00	0000	0000000	000

Quantum Jet Bundles

Francisco Simão

School of Mathematical Sciences, Queen Mary University of London

May 14, 2022

Joint work with Shahn Majid arXiv:2202.03067.

Introduction 00	Review of quantum differential geometry	Jet bimodules \mathcal{J}_A^K for an algebra A 0000000	Concluding remarks and Outlook
Table of (Contents		

2 Review of quantum differential geometry

3 Jet bimodules \mathcal{J}_A^k for an algebra A

Introduction	Review of quantum differential geometry	Jet bimodules \mathcal{J}_{A}^{K} for an algebra A	Concluding remarks and Outlook
•0			
Table of	Contents		

2 Review of quantum differential geometry

(i) Jet bimodules \mathcal{J}_A^k for an algebra A

Concluding remarks and Outlook

Introduction	Review of quantum differential geometry	Jet bimodules \mathcal{J}_{A}^{K} for an algebra A	Concluding remarks and Outlook
00			
Introduct	tion		

- $\bullet\,$ Long term goal: field theory via the variational bicomplex in the setting of NCG $\to\,$ Jet bundles
- Vector bundles in non-commutative geometry: use Serre-Swan theorem

vector bundles
$$E \to M \iff \operatorname{fgp} C^{\infty}(M)$$
-module $\mathcal{E} = \Gamma(E)$
kth jet bundle $J^k E \to M \iff \operatorname{fgp} C^{\infty}(M)$ -module $\mathcal{J}^k_{\mathcal{E}}$

• Atiyah exact sequence of $C^{\infty}(M)$ -modules:

$$0 \to \Omega^1 \otimes_{\mathcal{C}^{\infty}(\mathcal{M})} \mathcal{E} \to \mathcal{J}^1_{\mathcal{E}} \to \mathcal{E} \to 0$$

splittings $j^1_{\mathcal{E}} \colon \mathcal{E} \to \mathcal{J}^1_{\mathcal{E}} \iff$ connections on \mathcal{E}

where the $C^{\infty}(M)$ -module structure on $\mathcal{J}^1_{\mathcal{E}} \simeq \mathcal{E} \oplus \Omega^1 \otimes_{C^{\infty}(M)} \mathcal{E}$ given by

$$f.(s+\omega) = fs + \mathrm{d}f \otimes s + f\omega$$

In NCG $(C^{\infty}(M) \rightarrow A)$:

• Construct A-module $\mathcal{J}_{\mathcal{E}}^k$ such that $j_{\mathcal{E}}^k : \mathcal{E} \to \mathcal{J}_{\mathcal{E}}^k$ is a module map \Rightarrow Connections ∇ , braidings σ , Yang-Baxter equation

Introduction	Review of quantum differential geometry	Jet bimodules \mathcal{J}_A^{κ} for an algebra A	Concluding remarks and Outlook
00	0000	0000000	000
Table of	Contents		

2 Review of quantum differential geometry

(3) Jet bimodules \mathcal{J}_A^k for an algebra A

Concluding remarks and Outlook

	Review of quantum differential geometry	Jet bimodules \mathcal{J}_{A}^{K} for an algebra A	Concluding remarks and Outlook
	0000		
Quantun	n differentials		

- First-order differential calculus (A, Ω^1, d) :
 - an A algebra over k
 - A-bimodule Ω^1
 - $\bullet\,$ differential $d\colon A\to \Omega^1$ obeying the Leibniz rule

$$\mathbf{d}(ab) = (\mathbf{d}a)b + a(\mathbf{d}b)$$

•
$$\Omega^1 = A dA = \{a db | a, b \in A\}$$

- Extended to DGA $\Omega = \bigoplus_n \Omega^n = \mathcal{T}_A \Omega^1 / \mathcal{I}$ for some ideal \mathcal{I} , with $d^2 = 0$ and product $\wedge : \Omega^n \otimes_A \Omega^m \to \Omega^{n+m}$
 - In general $\omega \wedge \eta \neq (-1)^{|\omega||\eta|} \eta \wedge \omega$.
- Question: How to build higher derivatives?
 ⇒ Connections

Introduction	Review of quantum differential geometry	Jet bimodules \mathcal{J}_A^k for an algebra A	Concluding remarks and Outlook
00	0000	0000000	
Quantum	differential geometry		

• Connections on an A-bimodule E:

$$\nabla_{\mathcal{E}} \colon \mathcal{E} \to \Omega^1 \otimes_{\mathcal{A}} \mathcal{E}, \qquad \qquad \sigma_{\mathcal{E}} \colon \mathcal{E} \otimes_{\mathcal{A}} \Omega^1 \to \Omega^1 \otimes_{\mathcal{A}} \mathcal{E}$$

come with 'generalised braiding' $\sigma_{\mathcal{E}}$ for the Leibniz rules ($f \in A, s \in \mathcal{E}$)

$$\nabla_{\mathcal{E}}(fs) = \mathrm{d}f \otimes_{\mathcal{A}} s + f(\nabla_{\mathcal{E}}s), \qquad \nabla_{\mathcal{E}}(sf) = (\nabla_{\mathcal{E}}s)f + \sigma_{\mathcal{E}}(s \otimes_{\mathcal{A}} \mathrm{d}f).$$

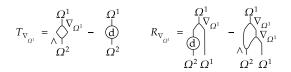
• Tensor product connection: $\nabla_{\mathcal{E}}, \nabla_{\mathcal{F}}$ on \mathcal{E}, \mathcal{F} induce a tensor product connection on $\mathcal{E} \otimes_A \mathcal{F}$ denoted by $\nabla_{\mathcal{E} \otimes_A \mathcal{F}}$.

$$\nabla_{\mathcal{E}\otimes_{\mathcal{A}}\mathcal{F}} = \nabla_{\mathcal{E}}\otimes \mathrm{id} + (\sigma_{\mathcal{E}}\otimes \mathrm{id})(\mathrm{id}\otimes\nabla_{\mathcal{F}}), \quad \sigma_{\mathcal{E}\otimes_{\mathcal{A}}\mathcal{F}} = (\sigma_{\mathcal{E}}\otimes \mathrm{id})(\mathrm{id}\otimes\sigma_{\mathcal{F}})$$

$$\nabla_{\mathbb{E}\otimes_{A}\mathcal{F}} = \frac{\nabla_{\mathbb{E}}}{\mathcal{O}^{1}} \left| \begin{array}{c} \mathcal{E} & \mathcal{F} & \mathcal{E} & \mathcal{F} & \mathcal{O}^{1} \\ \mathcal{F} & \mathcal{F} & \mathcal{O}^{1} & \mathcal{F} \\ \mathcal{O}^{1} & \mathcal{E} & \mathcal{F} & \mathcal{O}^{1} & \mathcal{E} & \mathcal{F} \end{array} \right| \mathcal{O}_{\mathbb{E}\otimes_{A}\mathcal{F}} = \sigma_{\mathbb{E}} \left| \begin{array}{c} \mathcal{E} & \mathcal{F} & \mathcal{O}^{1} \\ \mathcal{O}_{\mathcal{F}} & \mathcal{O}_{\mathbb{E}} \\ \mathcal{O}_{\mathbb{E}} & \mathcal{O}_{\mathbb{E}} & \mathcal{O}_{\mathbb{E}} & \mathcal{O}_{\mathbb{E}} \\ \end{array} \end{array} \right$$

Introduction	Review of quantum differential geometry ○○○●	Jet bimodules \mathcal{J}_A^k for an algebra A	Concluding remarks and Outlook
Quantum	differential geometry		
	$ \begin{array}{l} \underline{=} \ \Omega^{1} \\ \\ \underline{\cap}^{1} : \ \Omega^{1} \to \Omega^{1} \otimes_{\mathcal{A}} \Omega^{1}, \ \sigma_{\Omega^{1}} : \ \Omega^{1} \otimes_{\mathcal{A}} \Omega^{1}, \\ \\ \\ \text{rsion} \ \ \mathcal{T}_{\nabla_{\Omega^{1}}} : \ \Omega^{1} \to \Omega^{2} \text{ and curve} \end{array} $		

$$\mathcal{T}_{\nabla_{\Omega^1}} = \wedge \nabla_{\Omega^1} - d, \qquad \qquad \mathcal{R}_{\nabla_{\Omega^1}} = (d \otimes id - id \wedge \nabla_{\Omega^1}) \nabla_{\Omega^1}$$



•
$$T_{\nabla_{\Omega^1}} = 0$$
 implies $\wedge (\mathrm{id} + \sigma_{\Omega^1}) = 0$.

$$\wedge \left(\begin{array}{c} \Omega^{1}\Omega^{1} & \Omega^{1} & \Omega^{1} \\ | & | \\ \Omega^{1}\Omega^{1} & \Omega^{1} & \Omega^{1} \end{array} \right) = \begin{array}{c} \Omega^{1}\Omega^{1} & \Omega^{1} & \Omega^{1} \\ | & | \\ \wedge | \\ \Omega^{2} & \Omega^{2} \end{array} = 0$$

Introduction	Review of quantum differential geometry	Jet bimodules \mathcal{J}_A^{κ} for an algebra A	Concluding remarks and Outlook
00	0000	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	
Table of C	Contents		

2 Review of quantum differential geometry

3 Jet bimodules \mathcal{J}_A^k for an algebra A

Concluding remarks and Outlook

	and a sector for a		
00	0000	000000	000
	Review of quantum differential geometry	Jet bimodules \mathcal{J}_A^k for an algebra A	Concluding remarks and Outlook

First and second order jets

• Case of $M \times \mathbb{R} \to M$, i.e. $\mathcal{E} = C^{\infty}(M) = A$

Definition: The first and second order 'jet bimodules' $\mathcal{J}^1_A, \mathcal{J}^2_A$ and jet prolongation maps $j^1 \colon A \to \mathcal{J}^1_A, j^2 \colon A \to \mathcal{J}^2_A$

$$\begin{split} \mathcal{J}_{\mathcal{A}}^1 &= \mathcal{A} \oplus \Omega^1, & \qquad \mathcal{J}_{\mathcal{A}}^2 &= \mathcal{A} \oplus \Omega^1 \oplus \Omega_{\mathcal{S}}^2, \\ j^1(s) &= s + \mathrm{d} s, & \qquad j^2(s) = s + \mathrm{d} s + \nabla^2 s. \end{split}$$

- Quantum symmetric forms $\Omega^2_S = \ker \wedge \subset \Omega^1 \otimes_A \Omega^1$
- 'Second-order derivative'

$$\nabla^{2} \coloneqq \nabla_{\Omega^{1}} \mathbf{d} \colon A \to \Omega^{1} \otimes_{A} \Omega^{1}$$
$$\mathbf{d} s = \partial_{i} s \, \mathbf{d} x^{i} \qquad \Rightarrow \qquad \nabla^{2} s = \partial_{i} \partial_{j} s \, \mathbf{d} x^{i} \otimes \mathbf{d} x^{j} + \cdots$$

• 'Second-order Leibniz rule' for $s, r \in A$

$$abla^2(sr) = (
abla^2 s)r + \begin{bmatrix} 2\\1; \sigma_{\Omega^1} \end{bmatrix} \mathrm{d} s \otimes \mathrm{d} r + s
abla^2 r$$

where $\begin{bmatrix} 2\\1; \sigma_{\Omega^1} \end{bmatrix} = \mathrm{id} + \sigma_{\Omega^1} \colon \Omega^1 \otimes_A \Omega^1 \to \Omega^1 \otimes_A \Omega^1$ is a 'braided binomial'.

	Review of quantum differential geometry	Jet bimodules \mathcal{J}_A^k for an algebra A	Concluding remarks and Outlook
00	0000	000000	000
First and	l second order jets		

•
$$\mathcal{J}_A^1 = A \oplus \Omega^1$$
, $j^1(s) = s + ds$,
• $\mathcal{J}_A^2 = A \oplus \Omega^1 \oplus \Omega_5^2$, $j^2(s) = s + ds + \nabla^2 s$.

Proposition

Given (A, $\Omega, d)$ and ∇_{Ω^1} torsion free, then $\mathcal{J}^1_A, \mathcal{J}^2_A$ are A-bimodules with the actions (a $\in A)$

$$a \bullet_1 (s + \omega_1) = as + (da)s + a\omega_1$$
 $(s + \omega_1) \bullet_1 a = sa + sda + \omega_1 a$

on
$$(s + \omega_1) \in \mathcal{J}^1_A = A \oplus \Omega^1$$
 and

$$a \bullet_{2} (s + \omega_{1} + \omega_{2}) = a \bullet_{1} (s + \omega_{1}) + (\nabla^{2} a)s + \begin{bmatrix} 2 \\ 1 \end{bmatrix} \sigma_{\Omega^{1}} da \otimes \omega_{1} + a\omega_{2}$$
$$(s + \omega_{1} + \omega_{2}) \bullet_{2} a = (s + \omega_{1}) \bullet_{1} a + s(\nabla^{2} a) + \begin{bmatrix} 2 \\ 1 \end{bmatrix} \sigma_{\Omega^{1}} \omega_{1} \otimes da + \omega_{2} a$$

on $(s + \omega_1 + \omega_2) \in \mathcal{J}_A^2 = A \oplus \Omega^1 \oplus \Omega_5^2$. The jet prolongations j^1, j^2 and obvious projection $\pi : \mathcal{J}_A^2 \to \mathcal{J}_A^1$, are bimodule maps.

Introduction 00	Review of quantum differential geometry	Jet bimodules \mathcal{J}_A^k for an algebra A 000●000	Concluding remarks and Outlook
Jets to a	all orders: ingredients		

• For any *k* we take

$$\mathcal{J}^k_A = igoplus_{j=0}^k \Omega^j_S, \qquad j^k \colon A o \mathcal{J}^k_A, \qquad j^k(s) = s + \mathrm{d} s + \sum_{j=2}^k
abla^j s,$$

with the space of 'Quantum symmetric forms' and 'jth order derivative' given by

$$\Omega^{j}_{\mathcal{S}} = \bigcap_{i} \ker \wedge_{i} \subset (\Omega^{1})^{\otimes j}, \qquad \nabla^{j} = \nabla_{(\Omega^{1})^{\otimes j}} \cdots \nabla_{\Omega^{1}} \mathrm{d} : \mathcal{A} \to (\Omega^{1})^{\otimes j}.$$

• For k = 3 and higher we need to impose extra conditions.

	Review of quantum differential geometry	Jet bimodules ${\mathcal J}^k_A$ for an algebra A	Concluding remarks an
00	0000	0000000	000

Jets to all orders: conditions



Figure: a) Torsion free, b) flat, c) \land -compatibility, d) extendability, e) Leibniz compatibility, f) braid relations.

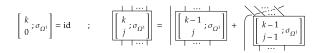
Introduction	Review of quantum differential geometry	Jet bimodules \mathcal{J}_A^k for an algebra A	Concluding remarks and Outlook
00	0000	0000000	
Leibniz c	ompatibility		

• The 'Leibniz compatibility' condition

leads to the 'kth-order Leibniz rule'

$$abla^k(sr) = \sum_{j=0}^k {k \brack j}; \sigma_{\Omega^1} (
abla^{k-j} s \otimes
abla^j r).$$

• Braided binomials $\begin{bmatrix} k \\ j \end{bmatrix}$; $\sigma \end{bmatrix}$: $(\Omega^1)^{\otimes k} \to (\Omega^1)^{\otimes k}$



	Review of quantum differential geometry	Jet bimodules \mathcal{J}_{A}^{K} for an algebra A	Concluding remarks and Outlook	
00	0000	0000000	000	
lets to all orders				

Theorem

Let ∇_{Ω^1} be a torsion free, flat, \wedge -compatible, extendable, Leibniz-compatible and with σ obeying the braid relations. Then \mathcal{J}_A^k , $j^k : A \to \mathcal{J}_A^k$

$$\mathcal{J}_A^k = igoplus_{j=0}^k \Omega_S^j, \qquad \qquad j^k(s) = s + \mathrm{d} s + \sum_{j=2}^k
abla^j s,$$

form an A-bimodule and bimodule map with actions \bullet_k given by

$$a \bullet_k \omega_j = j^{k-j}(a) \odot \omega_j, \qquad \qquad \omega_j \bullet_k a = \omega_j \odot j^{k-j}(a),$$

for $\omega_j \in \Omega_S^j$. Quotienting out Ω_S^k gives a bimodule surjection $\pi_k : \mathcal{J}_A^k \to \mathcal{J}_A^{k-1}$ such that $\pi_k \circ j^k = j^{k-1}$.

- Unital associative product on $\Omega_S = \bigoplus_{j=0}^{\infty} \Omega_S^j$: $\odot = \begin{bmatrix} k \\ j \end{bmatrix}; \sigma_{\Omega^1} : \Omega_S^{k-j} \otimes_A \Omega_S^j \to \Omega_S^n$
- Infinite jets: define \mathcal{J}^∞_A as the colimit of

$$\cdots \to \mathcal{J}_A^k \to \mathcal{J}_A^{k-1} \to \cdots \to \mathcal{J}_A^1 \to \mathcal{J}_A^0 = A.$$

Introduction 00	Review of quantum differential geometry	Jet bimodules \mathcal{J}_A^{κ} for an algebra A	Concluding remarks and Outlook ●○○
Table of	Contents		

2 Review of quantum differential geometry

(i) Jet bimodules \mathcal{J}_A^k for an algebra A

Introduction 00	Review of quantum differential geometry	Jet bimodules \mathcal{J}_A^k for an algebra A 0000000	Concluding remarks and Outlook ○●○

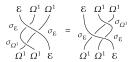
Concluding remarks and Outlook

Further remarks:

Examples: M₂(ℂ), S₃, fuzzy ℝ³, κ-Minkowski spacetime

• Vector bundle case
$$\mathcal{J}^k_\mathcal{E} = \mathcal{J}^k_A \otimes_A \mathcal{E}$$

- A-bimodule \mathcal{E}
- Connection $\nabla_{\mathcal{E}}$ with $\sigma_{\mathcal{E}}$ satisfying 'coloured braid relations' (among others)



• $\Omega_S \subset T^{sh}_A \Omega^1 = (T_A \Omega^1, \odot)$ has the structure of a braided-Hopf algebra

 \bullet Approach with endofunctors (Flood, Mantegazza, Winther arXiv:2204.12401v1) Next steps:

- Computation of further examples (fuzzy sphere, ...)
- Case with $R_{\nabla_{01}} \neq 0$?
- Variational bicomplex

Review of quantum differential geometry	Jet bimodules \mathcal{J}_A^k for an algebra A	Concluding remarks and Outlook
		000

Thank You!